
Automatic Exploded View

Kirill Brodt

Bricsys

May, 2018

1 / 26



Motivation

NP complete. . .

1 / 26



Outline

1 Work accomplished

2 Literature review
Basic approach

3 Linear Exploded View
Results
Drawbacks

4 Automatic Exploded View
Results
Drawbacks

5 Hierarchical Exploded View
Results

6 Perspective

2 / 26



Section 1

Work accomplished

3 / 26



Work accomplished

Research
Literature review and compilation
Algorithm of exploded view

Technologies
C++

Visual Studio 2013
ACIS (geometric modeling kernel)

Architecture
class Part; (getBoundingBox, transform, etc. . . )
class ExplodedViewAlgorithm; (abstract class)
class LinearExplodedViewAlgorithm;

class AutomaticExplodedViewAlgorithm;

class HierarchicalExplodedViewAlgorithm;

4 / 26



Section 2

Literature review

5 / 26



Literature review
In[1] authors propose to
construct a directed acyclic
explosion graph representing
the relative order in which
parts can be exploded
without violating blocking
constraint (possible explosion
directions obtained by local
translational freedom (LTF)
cones).

[1] Li, Agrawala, Curless, et al., “Automated Generation of Interactive 3D Exploded View Dia-
grams”, 2008

6 / 26



Literature review
In[2] authors propose to use
matrix-based assembly models
representing the relationships
between parts for 12 directions (6
axes of global and 6 axes of local
coordinate systems).

[2] Yu and Zhang, “Hierarchical exploded view generation based on recursive assembly se-
quence planning”, 2017

7 / 26



Basic approach

struct Part

{

BBox getBoundingBox(coordinate_system);

void move(direction);

bool isBlockedBy(target_part , direction);

// some other stuff ...

};

8 / 26



Basic approach

Algorithm 1 Disassembly sequence construction

Require: Set S of active parts (unremoved parts)
Ensure: Disassembly sequence set D
1: D←;
2: while S 6= ; do
3: C⊂ S← getCandidateSet(S) . unblocked parts in at least one
direction

4: P∗ ⊂ C← chooseBestParts(C) . choose «best» parts to remove
5: D← D∪P∗ . add P∗ to disassembly sequence set
6: S← S\P∗ . remove part
7: endwhile

getCandidateSet uses isBlockedBy
chooseBestParts depends on specification

9 / 26



Basic approach

Algorithm 2 Exploded view

Require: Disassembly sequence set D
Ensure: Exploded view
1: accumulated bounding box← D.first.getBoundingBox()
2: for part∈ D do
3: current bounding box← part.getBoundingBox()
4: move part to escape accumulated bounding box
5: enlarge accumulated bounding box by current bounding box
6: end for

10 / 26



Section 3

Linear Exploded View

11 / 26



Linear Exploded View

Given direction d define the matrix E also called extended interference
matrix (EIM):

eij =
{

0, if pi does not interfere with pj,

1, otherwise.
← isBlockedBy

If Ei• = 0 then part pi is removable←getCandidateSet

If there is no such parts let’s consider the matrix E as a directed graph
and find all strongly connected components to condensate into the tree.
Consider all parts from one connected component as a whole part

←chooseBestPart and add them to the disassembly sequence set.
Explosion follows the rule of “the later disassembled components

explode earlier”←getBoundingBox, move

12 / 26



Results of Linear Exploded View

13 / 26



Results of Linear Exploded View

13 / 26



Results of Linear Exploded View

13 / 26



Results of Linear Exploded View

13 / 26



Drawbacks of Linear Exploded View

To construct the matrix E we needO(n2b) time complexity with
n = number of parts and b = complexity of isBlockedBy depending on
geometry.

isBlockedBy uses ray tracing emitting from all vertices of surface finite
element mesh of the part to test the interference.
So this function sometimes gives false positives and false negatives.

Thus it must be improved both in performance and accuracy.
Assembly Number of parts CPU time in seconds
Leng 7 2.5
Szerv 10 16
Loader 61 7.5
Gem 73 54
i7-7700HQ CPU@ 2.80GHz
Approximately time complexity isO(n3mc+n2b),

m = number of edges in graph and c = number of independent sets.
14 / 26



Section 4

Automatic Exploded View

15 / 26



Automatic Exploded View

Let’s generalize previous linear exploded view algorithm for general case.
Take six axial directions of the global coordinate-system ±x,±y,±z but,

we go further and take also six axial directions of the local coordinate
systems of the components. Construct EIMmatrices for each direction and
use the same algorithm as in linear case.
But how to choose the “best” parts to remove from
candidate set?
Simply take the direction with the most number of unblocking parts to
move them simultaneously.
PROFIT!

Unblocking parts such that theirs bounding boxes do not overlap⇒
maximum disjoint set (MDS), another NP complete problem inside NP
complete problem :)

16 / 26



Results of Automatic Exploded View

17 / 26



Results of Automatic Exploded View

17 / 26



Drawbacks of Automatic Exploded View

The same as for Linear Exploded View.
From the set of all possible directions choose the most natural direction.
Very slow, need to be constructed 12(!) EIMmatrices
Assembly Number of parts CPU time in seconds
Itengely 6 3.2
Loader 61 27
Approximately time complexity isO(12×n3mc+9×n2b),

n = number of parts,m = number of edges in graph,
c = number of independent sets and b = complexity of isBlockedBy.

18 / 26



Section 5

Hierarchical Exploded View

19 / 26



Hierarchical Exploded View

Idea!
What if we use hierarchical exploded view relying on

assembly tree?

20 / 26



Hierarchical Exploded View

Using assembly tree, we can start from the bottom levels representing
sub-assemblies of full assembly and do explosion view with previous
algorithm
Raising to higher levels only the base part is taken instead of whole

sub-assembly from lower levels
Bounding box of this base part is calculated as the bounding box of

whole sub-assembly

21 / 26



Results of Hierarchical Exploded View

It took about 30 minutes

22 / 26



Results of Hierarchical Exploded View

It took about 30 minutes

22 / 26



Results of Hierarchical Exploded View

It took about 30 minutes

22 / 26



Results of Hierarchical Exploded View

It took about 30 minutes

22 / 26



Comparison
Assembly Number of parts CPU time in seconds

Linear Automatic EV Hierarchical EV
Gem 73 54 — 245
Loader 61 7.65 27 45
2 Loaders 2×61 24.5 93 94
3 Loaders 3×61 50 200 143
V8 21 — — 14
Difi 19 17 86 51
2 Difis 2×19 60 360 168
Wheel 24 — 6.4 5.5
2 Wheels 2×24 — 19.4 14.4
4 Wheels 4×24 — 60.5 28.3
8 Wheels 8×24 — 217 57.8
RC Buggy 217 — — 1623

23 / 26



Section 6

Perspective

24 / 26



Perspective

Improve isBlockedBy both in performance and accuracy
Find the criterion to choose the natural direction
Parallelism
Continuity
Stability
Directionality

Isometry
Reinforcement Learning

25 / 26



Bibliography

W. Li, M. Agrawala, B. Curless, and D. Salesin, “Automated generation
of interactive 3d exploded view diagrams”, ACM Trans. Graph., vol. 27,
no. 3, 101:1–101:7, Aug. 2008, ISSN: 0730-0301. DOI:
10.1145/1360612.1360700. [Online]. Available:
http://doi.acm.org/10.1145/1360612.1360700.

J. Yu and J. Zhang, “Hierarchical exploded view generation based on
recursive assembly sequence planning”,, vol. 93, pp. 1–22, Jun. 2017.

26 / 26

https://doi.org/10.1145/1360612.1360700
http://doi.acm.org/10.1145/1360612.1360700

	Work accomplished
	Literature review
	Basic approach

	Linear Exploded View
	Results
	Drawbacks

	Automatic Exploded View
	Results
	Drawbacks

	Hierarchical Exploded View
	Results

	Perspective
	References

